Course Description

Course Code	YZ 106
Course Name	DISCRETE STRUCTURES
Prerequisite Courses	English
Language of the Course	
Course Coordinator	Assistant Prof. Dr. Fatih SARIKOC
Instructor(s)	
Course Assistants	The aim of this course e tis to provide an introductory survey in discrete and combinatorial mathematics. To explain the application of discrete mathematics in computer science. To obtain the solutions and algorithms of some mathematical problems. The aim of the course A branch of mathematics that teaches basic computer infrastructure. Course Content

Weekly Course Content

Week 1 Logic and Propositional Equivalences, Chapter 1.1-1.2 (Rosen)
Week 2 Predicates and Quantifiers, Nested Quantifiers Chapters 1.3 and 1.4 (Rosen)
Week 3 Methods of Proof, Chapter 1.5 (Rosen)
Week 4 Sets, Set Operations and Functions Chapter 1.6, 1.7, 1.8 (Rosen)
Week 5 Midterm Exam I
Week 6 Algorithms, The Growth of Functions, Complexity of Algorithms Chapter 2.1-2.3 (Rosen)
Week 7 Mathematical Reasoning, Induction and Recursion, Chapter 3.1-3.5 (Rosen)
Week 8 Basics of Counting, Permutations and Combinations Chapter 4.1, 4.3, 4.4 (Rosen)
Week 9 Relations and their Properties, n-ary Relations and Their Applications, Representing Relations Chapter 7.1.-7.3
Week 10 Midterm Exam II
Week 11 Introduction to Graphs, Graph Terminology, Special Graphs, Shortest Path Problems, Chapter 8.1-8.3, 8.6 (Rosen)
Week12 Introduction to Trees, Applications of Trees, Chapter 9.1-9.2 (Rosen)
Week 13 Traversal Algorithms, Spanning Trees, Chapter 9.3-9.4 (Rosen)
Week 14 Modeling Computation, Language and Grammars, Finite State Machines, chapter 11.1-11.3 (Rosen)
Week 15 Final Exam.

Course Learning Outcomes

To familiarize students with the basic concepts and methods of mathematics in order to ensure the ability required in later studies of mathematics and computer sciences.
2 To interpret the computer application of discrete mathematics
3 To analyze the discrete contractions
4 To form algorithms for mathematical problems
5 To gain the solution to daily life problems.
$6 \quad$ To solve the problems by graphs
7 To obtain the solution to some problems
8 To understand the solution to some problems through graphs
9 To gain counting methods

Contribution of the Course to Program Qualifications Contribution

01 The student will have the ability to apply an analytical approach, mathematics, and science knowledge in software and engineering issues.
02 The student will have the ability to identify, define, formulate and solve a problem in software and computer systems.
03 The student will have gained scientific research skills in software and engineering problems and has the ability to design a system, part, Level

04 The student will have the ability to use the design capability, techniques, and tools required for engineering applications.
05 The student will have the ability to design, implement and interpret experimental work and software projects by analyzing the results.
06 The student will have the ability to work between disciplines and teamwork.
07 The student will have the ability to work in international environments and adapt to different cultures.
08 The student will have verbal and written communication skills in Turkish and English.
09 The student will have the awareness of the necessity of lifelong learning and the ability to realize it.
10 The student will gain knowledge of legal issues with an awareness of professional and ethical responsibility.
11 The student will have managerial skills (leadership, organization, time and risk management, quality awareness, efficiency, etc.).
12 The student will be able to participate in social activities, acquire regular sports habits and use time in the best way
13 The student will have the ability to find unusual ways and produce projects.
14 The student will have professional self-confidence, be an entrepreneur, and take initiative.
15 It is sensitive to the problems of the age and looks after the national interests.

ECTS WORKLOAD

	Number	Duration (hours)	Number*Duration
Face-to-face education	14	3	42
Out-of-class study time (pre-study, reinforcement)	13	2	26
Homeworks	6	1	6
Presentation / Seminar preparation	0	0	0
Quizzes	0	0	0
Preparation for midterm exams	8	2	16
midterm exams	2	2	4
Project (Semester assignment)	0	0	0
Lab	0	0	0
fieldwork	0	0	0
Preparation for the final exam	8	1	8
Semester final exam	1	2	2
Research	0	0	0
TOTAL WORKLOAD			104
ECTS			3
Evaluation			
SEMESTER EVALUATION		Number	Contribution Percentage
Midterm			2100
Quiz			$0 \quad 0$

Homework	0	0
SEMESTER TOTAL		$\mathbf{1 0 0}$
The contribution rate of mid-term evaluations to success		40
The contribution rate of the final exam to success		60
GRAND TOTAL		$\mathbf{1 0 0}$

RESOURCES	
Textbook	Kenneth H.Rosen, Discrete Mathematics, and Its Applications, 5th ed., Mc.Graw Hill, 2003.
Helpful Resources	Kenneth H.Rosen, Discrete Mathematics, and Its Applications, 5th ed., Mc.Graw Hill, 2003.

